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Abstract

When the number of agents in an economy is finite, the allocation rule

induced by Rational Expectations Equilibria (REE) can be strategically

manipulated. Implementation of REE has been shown to be possible in a

certain class of environments. A drawback of these results is that the

mechanisms employed have infinite-dimensional message spaces. Given that

information transmission is generally costly, such mechanisms may be

infeasible. This paper shows that having more than two informed agents is

sufficient to guarantee implementation of REE using a finite-dimensional
message space. There is a large class of interesting economic problems of
asymmetric information that meet this condition. The mechanism introduced

here generates an allocation and a signal and the solution concept is a

refinement of Bayesian equilibria. Since the mechanism translates data

from an infinite-dimensional class of environments to finite dimensions,

its informational complexity is minimal within the class of all mechanisms.
Thus, the various desiderata of a price mechanism are restored in a manner
that is feasible from the viewpoint of incentive-compatibility and the

constraints imposed by costly information transmission.

The author is grateful to William Thomson, Harold Cole and Dimitrios

Diamantaras for their comments on an earlier version of the paper. The
usual disclaimer applies.
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1. INTRODUCTION

The price mechanism occupies a central position in the theory of

resource allocation. A complex body of information about individual

preferences are encoded into simple finite-dimensional messages such as

price and demand vectors; partially informed agents draw inferences about

the knowledge of informed agents from observable aggregate statistics such

as prices; markets clear; and some measure of "efficiency" is achieved in

terms of allocation of the economy's resources. An allocation rule induced

by the Rational Expectations Equilibria (REE) of an economyis, however,

subject to strategic manipulability when the number of agents in the

economy is finite — or at least "not very large". This criticism has been

levelled against a wide class of allocation rules (see Hurwicz (1972)).

This paper provides a set of sufficient conditions under which the REE

allocations perform their primary economic duties and are feasible given

constraints imposed by incentives and costly communication; they are

implementable by a mechanism which preserves (i) finite-dimensional message

transmission, (ii) full information revelation through prices, (iii)

market-clearing and (iv) immunity to strategic manipulations and, thereby,

ex post efficiency.

It has been well established that the so-called incentives problem

leads to inefficiencies in resource allocation. Recent literature on the

design of incentive-compatible mechanisms under asymmetric information has

addressed this issue and sufficient conditions for the implementability of

REE have been provided. These conditions restore the properties (ii)-(iv),

given above, of REE allocations at the cost of property (i), i.e. that

relating to informational complexity. The size of a mechanism's message



space (if it is Euclidean, then its dimensionality) serves as the measure

of informational complexity. It measures the maximum amount of information

that the central planner must be prepared to handle. In general, the bulk

of the mechanism design literature (which is primarily influenced by

applications of the Revelation Principle) ignores the problem of

informational complexity. The REE-implementation mechanisms suggested by

Palfrey and Srivastava (1987) and Wettstein (1987) are enhanced revelation

schemes where agents report their private information to the game designer

as part of their messages. In typical economic problems, where agents may

have continuous and convex preferences, this amounts to using an

infinite-dimensional message space. Given that information transmission is

generally costly (as evidenced by the existence of limited channels of

communication and bounds on the abilities of both humans and computers to

process information), such mechanisms may be infeasible. Thus, we lose one

of the most crucial properties of the price mechanism.

The literature on resource allocation (Hurwicz (1977), Mount and

Reiter (1974)), organization theory (Marschak (1986)), accounting (Melumad

and Reichelstein (1987)), among others, have emphasized the concern for

minimizing the informational costs of allocation mechanisms. Recent work

on combining the informational and incentive aspects (Williams (1986),

Reichelstein and Reiter (1988), Saijo (1988), Chakravorti (1987)) has

investigated the possibilities of devising mechanisms that are immune to

strategic manipulation and economize on the amounts of information that

need to be transmitted.

In this paper, we define a set ??, which is a collection of

state-contingent REE allocations, and address the following question: under

what conditions can we devise a mechanism whose set of equilibria coincides



with 1R and whose message space is of finite dimensionality? We shall refer

to this property, in the sequel, as "finite implementation". It appears

that some form of restriction on the informational structure would be

necessary. The result obtained here is that a sufficient condition for

finite implementation of REE in economies with fully and partially informed

agents is that there be more than two fully informed agents. This

condition is met in many economic models of interest, for example, those

which analyze transactions between several buyers and sellers (of used

cars, skilled labor, etc.) where the sellers have accurate information

about the quality of the product and the buyers are uninformed or adverse

selection problems with a single principal and multiple agents.

In terms of the design of a mechanism, we apply some ideas hinted at

in Green and Laffont (1987). They indicate that the concept of rational

expectations can be blended with game-theoretic solution concepts in games

where agents are not committed a priori to their strategies and can revise

them after observing some aggregate statistic which is generated as an

outcome of the game. The mechanism devised here is a game whose outcome

function recommends an allocation and a price. An agent derives utility

from the allocation and acquires information from the price. The

combination yields an expected utility from the outcome of the game to the

agent. The set of Bayesian equilibra is refined to allow only those

equilibria that survive any new information acquired after observation of

the outcome of the game. We call this refinement Rational Expectations

Bayesian Equilibria (REBE).

Some final comments are in order.

We shall concentrate on fully revealing REE and REBE. The issue of

existence of REE does not constrain us here. The implementation problem is



interesting only in economies in which the set "R is non-empty. REBE will

be shown to exist.

We have shown a link between the game-theoretic concept of posterior

implementability and the economic ideas of rational expectations. As

Grossman (1981) points out, the Walrasian paradigm does not provide for the

possibility that uninformed agents may acquire information by observing

prices. Similarly, a mechanism which does not take into account the fact

that the outcome of the mechanism may convey information to the agents is

subject to the criticism that this endogenously generated information would

destroy the incentive properties of the mechanism.

Following Green and Laffont's (1987) formulation of the problem, we

deal with single-stage normal form games here. A multi-stage version with

an explicit recontracting process can be constructed. The latter approach

is, however, rather cumbersome.

An issue not dealt with here is that of establishing necessary

conditions for finite implementability. A crucial question along these

lines would be: is it necessary to have an informed agent to achieve finite

implementability in a wide class of economies?

Finally, we note that once we have reduced an implementation problem

defined for an infinite-dimensional class of environments to one of finite

implementation, the level of informational complexity is also minimal in

the class of all mechanisms. Any finite message space can be smuggled into

a one-dimensional space by applying the inverse of an appropriate

space-filling function and then using the function itself to retrieve the

original data. An interesting question, of course, would be the

investigation of finite implementation using mechanisms that obey certain

smoothness restrictions (see Reichelstein and Reiter (1988)) which rule out



such information smuggling.

The next section defines the economy. Section 3 defines the

implementation problem. The result is given in the final section.

2. THE ECONOMY

The class of economies we consider has l(i 2) goods and n(^ 2) agents.

A^ is the set of agents and 9 is a set of states of the world. We assume

that 9 is of the form 9 = x 9 . Each agent i e N is given by a list <u ,

i€N i i

0) , 9 , g > where u : \R x9^IRisi's VNM utility function, w g R is
i i 1 i + i ++

i's initial endowment, 9 is the space in which Vs private information
i

about 9 resides and q : 9 ^ (0, 1] is i's prior probability distribution on
i

9. All the entries in this list are common knowledge, in the sense of

Aumann (1976). Without loss of generality, assume that 9 is finite.

i can derive a posterior probability distribution on 9 using the

function q' defined by an application of Bayes' Law on q. q'iQ\ H)

denotes the probability that i assigns to the state d given his/her

observation of an event H. An allocation is a random variable /: Q ^ A.

In the sequel, we use V if , H) to denote 7^, ^g'(e'| H)u(/(e'), 9'). A
1 i ^9 e9^i ' i i

sub-group of agents, J Q N is fully informed, i.e. for all J g J, for all 9

e 9, g'(9| 9 ) = 1.

It is assumed that for all i e N and all z e \R , u is strictly
i + i

increasing in z . We shall write ix ) as >: and ix ) as >: and^
i i iGN j jGN\<i} -i

y 0) as n. Let A = {z € R^": Y z = Q} and A = {z e R^: z :^ Q}. ^
^iGN I + ^iGN i i 1 + i

= if: Q ^ A where / = (/ ) and Vi g N, V9, 9' g 9, 9 = 9' => / (9) =
i iGN i i i

/.(9')} is the Joint consumption space. A price function is a random



variable p: G -> IR . J' is the space of all price functions. Given (9, p)

& e X T, let B {p(Q)) = {/(e) € A: p(e)/ (e) = p(e)o> , f e ^} be Vs
i ill i

constrained budget set.

A Rational Expectations Equilibrium (fully revealing), written as REE,

is a pair (/, p) € ^ x J' satisfying the following conditions:

(i) for all i € iV and all € 6, / maximizes V if , (9 , p(e)))

subject to /.(9) € B {p(9)),

(ii) for all i e iV and all 9 e 9, q'(9| (9 , piQ))) = 1.
i ' i

Let ^ = {f € ^: 3(/, p) € ^ X ^ such that (/, p) is an REE>.

REMARK: This notion of an REE is a little different from the original

concept initiated by Radner (1967), Green (1972) and Lucas (1974). The

budget set used in our definition is constrained by the total endowment.

The allocations generated by the two concepts coincide in the interior of

A. This modification follows a similar modification of the Walrasian

correspondence due to Hurwicz, Maskin and Postlewaite (1984). In the

absence of this constraint on the budget set we would run into

non-implementability problems.

3. FINITE IMPLEMENTATION

Let M denote a set of messages for i € N. A mechanism, n, is a
i

n 1

triple {N, M, ^>. M is a message space defined by x. M., and ^: M -> R x
i€N i +

R
I 12

is an outcome function. Let ^ (m) and ^ (m) denote the projections of

r» 7 7

^(m) on R and R respectively. Agent i's strategy is a function s.: 9. ^
+ + i i

M , Let S denote i's strategy space with S = X S .

i 1
e>j t^

i€N i

Given ji = {N, M, ^}, a Rational Expectations Bayesian Equilibrium



(fully revealing), written as REBE, for fi is a strategy s € S satisfying

the following conditions:

2
(i) there exists p e T such that ^ os = p,

(ii) for all i € N, for all 9 6 8, for all s' € S , V (£^os, (9 ,

i i i ^i i'

pie))) 2: l'j(?M5;, s_^), (9^, pie))) and

(iii) for all i € AA, for all 9 e 9, g'(9| (9 , pie))) = 1.

Let &in) = if e ^: 3s € S such that s is an REBE of fx and ^os = f).

\i = {N, M, ^} is said to finitely implement REE if

(i) Ji. = &iii) and

(ii) there exists a positive integer t such that M £ R .

REMARK: The notion of a mechanism defined here extends the concept of a

game form, introduced by Gibbard (1973), which defines an allocation

mechanism in economic environments. A mechanism /i, as defined above,

determines a signal as well as an allocation. The concept of REBE refines

the set of Bayesian equilibria of /i. The former retains those equilibria

that survive even when agents are not committed a priori to their

strategies and can revise them after observing the outcome of the game.

Correspondingly, the notion of implementation is an application of

posterior implementability (Green and Laffont (1987)).

4. THE RESULT

THEOREM: If \J\ > 2, then there exists a mechanism }i which finitely

implements REE.

REMARK: Thus far, in the literature, finite implementation has been shown

to be possible for the Walrasian correspondence using Nash equilibrium as

8



the solution concept (Hurwicz (1979), Schmeidler (1980)). From a Bayesian

standpoint, the concept of Nash equilibrium is interpreted as an solution

concept for games of complete information.

REMARK: By the Revelation Principle, a necessary condition for

implementation of REE is that every / in ^ must satisfy an incentive

compatibility constraint. An even stronger condition has been shown to

necessary by Blume and Easley (1987): public predictability of information,

i.e. the private information of in - 1) agents taken together reveals the

information of the remaining agent. This condition is satisfied by the

assumption that
|
J

|
> 2.

m
The proof of the theorem is by way of construction of fi with the

desired properties. Choose a subset K of J with \K\ =3.

vi € AT, M = {s(e ) = (sVe ;, sVe ;, s^re )) € a xir^xiR:s € s , e
i i i i i i i i i i + + i i i

The following definitions will be used to simplify the notation:

Let 8 € 9 be given.12 3 I

s (Q ) = is (d ), s (e ), s (Q )) satisfies Property a\i if
-i -i j j j j j j j€N\(i}

36 € R^ such that Vj € K\{l}, s^O ) = 8 and
+ j j

(i) (s^ ie ), Q - I , s\q )) € a
-i -i '^jCNXd) j j

(ii) Vj € N\{i}, s^{9) =

(iii) Vj € N\{i}, s\6 ) € B (5)
j j j

Let 5 (s(0)) = 5 such that 3l, j € K with s^(e ) = s^(e ) = 5.
i i j j

Let Lisie)) = {i e AT: Vj € N, s^iG ) ^ s^iQ )}.
1 i j j

Let denote a vector of zeros in IR .

+

r> 1

^: M ^ \R X R is defined by the rules given in Figures 1 and 2.
+ +



[Insert Figures 1 and 2 here.]

REMARK: The agents call out demand and price vectors and a number in IR .

Only the prices announced by the members of K matter. If any two of the

members of K agree on a price, that price is posted by the game designer

2
via the function ^ . The method of proof will be as follows. It will be

shown that in an REBE, at least two members of K will, indeed, agree on a

price. This price conveys the information held by these agents to the

uninformed agents. Every REBE allocation is an REE allocation and vice

versa. The proof of the theorem is given by the following lemmata.

LEMMA I: ^ Q Si^i ).

Proof of Lemma 1^ Choose (/, p) e 9- x tP such that (/, p) is a REE. To show

*

that / e Si^i ), consider s e S such that for all i € K, and all 9 € 9,

s (e ) = (/ (e), pie), O) and for all i e N\{K} and all 6 e 9, s (6 ) =
i i 1 i i

(/ (e), s^(e ), 0). We can write 5 (s(e)) = pie) for all 9 e 9. Observe
i i i

that for all i € N and all 9 e 9, s (9 ) satisfies Property a|i. Hence

Cases 2.1 and A apply. Thus, for all 9 € 9, ^isie)) = ifie), pie)).

1 2
Consider unilateral deviation by some i € iV to an arbitrary s' = is[ , s\ ,

3
s' ) € S . Choose some 9 € 9. There are two possibilities:

i i

(i) (s'^(9 ), / (9)) € A. Case 2 and Case A apply. Since 5 (s(9)) =
i i -i ^^ -^

5*(s'(9), s (9 )), ^hs'ie), s ie )) € {/(9), 0)} and ^^is\ie),
i i -i -i i i i -i -i i i i i

s .(9.)) = p(9)).
-1 1

(ii) {s'^9), / ie)) ^ A. Case 1 and Case A apply. ^^is'ie),
i i -i i i i

»
s (9 )) € {s'^(9), ui). Since 5 isie)) = 5 (s'(9 ), s (9 )),
-i -i i i i i i -i -i

?V(9^), s_,ie)) = ipie)).

Given that in case of possibility (ii) ^^(s(9)) € Bip(e)), by

definition of an REE, for i e K, it is clear that unilateral deviation to

10



s' makes i no better off. For i € N\K, the same argument holds once we
i

take account of the fact that in every 9 € 0, ^ (s(G)) = p(e) is fully

*
revealing. By definition, / € g'(fi ).

LEMMA 2: Si^i ) c ^.

Proof of Lemma 2^ Choose s € g(ji ). We need to show that ^ °s e 'R. We

shall first prove the following claim:

CLAIM: Let s € &(ii ) be given. For all Q e e, ^^(s(e)) ^ 0.

Proof of Claim: Choose i ^ N and 9 € 0. Suppose ^ (s(9 )) ^ Q and

^ (s(9 )) = 0. Given |iV| > 2, such an i exists. Consider an alternative

1 3
strategy for i, s' € S where for all 9 € s' (9 ) = n and s' (9 ) >

s^iQ ) for all J € N. By definition of REBE, for all 9 € 0, ^^{s{9)) is

fully revealing. In addition, ^ (s(9 )) = informs i that Case B applies,

*
i.e. there exists no J e N such that s [9 ) satisfies Property oc\j.

*
Thus, i is fully informed that in state 9 , Case 2.2.1 will apply and by

the assumption that u is strictly increasing in z , Vs utility is
i i

*
strictly greater in state 9 after the deviation to s' . This contradicts

i

*
the hypothesis that s € Si^i ).

Proof of Lemma 2 (Contd.): Given the claim proved above, for all 9 € 0,

s(9) is such that Case A is satisfied. Thus, it is common knowledge that

for all 9 € 0, there exists i € N such that s (9 ) satisfies Property
-i -i

a|i. Also, there exists p € T such that for all 9 € 0, ^^(s(9)) = 5 (s(9))

= p(9). Choose i € N. Consider a unilateral deviation by i to s' € S
i i

defined such that for all 9 € 0, s'^9 ) e B ip(e)) and s'^{9 ) > s^i9 )

i i i i i j j

for all J € N\{i}.' By construction, either Case 1.1 or Case 2.2.1 applies,

i.e ^^(s'(9 ), s (9 )) = s'^9 ) for all 9 € 0. By definition of REBE,
i i -i -i i i

11



for all e € e. V<:s\^, (e.. pO))) ^ V.(^os. (8^. p(e))). since this holds

for all s\\9) e BSp(e)), we conclude that ^os € ??.

12
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Let m = s(e) = ((s (9 ), s (9 ), s (9 )) be given.
i i i i i i i€N

^

Figure 1: Rules for determining ^ (_m2

Case U 3i € N such that (i) s (9) ^ A, (ii) m satisfies Property a|i.

Case 1.1

(i) she ) € B (5 (m)) and
i i i

(ii) Urn) = ii)

i
^\m) = (s|(9^).

(£2 - s (9 ) .

i i )

(n-l)

Case 1.2

Otherwise

-y

^ (m) = (J

Case 2:

Otherwise

Case 2.1

(i) s\e) € A

(ii) \^i € N, m satisfies Property ali
-i '

Case 2.2

Otherwise

^\m) = s^(9)

Case 2.2.1

3i € N such that

L(m) = ii}

^\m) = , l,^ . (Q - s (9 ) .

(s (9 , i i )

1 i

(n - 1)

Case 2.2.2

Otherwise

^
^ (m) = 0)

15



Figure 2: Rules for determining ^ {ml

Case A:

3i € N such that m satisfies Property a
|
i

r(m) = 5 (m)

Case B:

Otherwise

r(m) =

16








